Enzymatic processing of replication and recombination intermediates by the vaccinia virus DNA polymerase
نویسندگان
چکیده
Poxvirus DNA polymerases play a critical role in promoting virus recombination. To test if vaccinia polymerase (E9L) could mediate this effect by catalyzing the post-synaptic processing of recombinant joint molecules, we prepared substrates bearing a nick, a 3'-unpaired overhang, a 5' overhang, or both 3' and 5' overhangs. The sequence of the 5' overhang was also modified to permit or preclude branch migration across the joint site. These substrates were incubated with E9L, and the fate of the primer strand characterized under steady-state reaction conditions. E9L rapidly excises a mispaired 3' strand from a DNA duplex, producing a meta-stable nicked molecule that is a substrate for ligase. The reaction was not greatly affected by adding an unpaired 5' strand, but since such molecules cannot be processed into nicked intermediates, the 3'-ended strand continued to be subjected to exonucleolytic attack. Incorporating homology into the 5' overhang prevented this and permitted some strand assimilation, but such substrates also promoted strand-displacement DNA synthesis of a type predicted by the 1981 Moyer and Graves model for poxvirus replication. Single-strand annealing reactions are used by poxviruses to produce recombinant viruses and these data show that virus DNA polymerases can process DNA in such a manner as to both generate single-stranded substrates for such reactions and to facilitate the final processing of the reaction products.
منابع مشابه
Duplex strand joining reactions catalyzed by vaccinia virus DNA polymerase
Vaccinia virus DNA polymerase catalyzes duplex-by-duplex DNA joining reactions in vitro and many features of these recombination reactions are reprised in vivo. This can explain the intimate linkage between virus replication and genetic recombination. However, it is unclear why these apparently ordinary polymerases exhibit this unusual catalytic capacity. In this study, we have used different s...
متن کاملFellowships, Grants, & Awards
Vaccinia virus DNA polymerase catalyzes duplex-byduplex DNA joining reactions in vitro and many features of these recombination reactions are reprised in vivo. This can explain the intimate linkage between virus replication and genetic recombination. However, it is unclear why these apparently ordinary polymerases exhibit this unusual catalytic capacity. In this study, we have used different su...
متن کاملPoxvirus DNA topoisomerase knockout mutant exhibits decreased infectivity associated with reduced early transcription.
Vaccinia virus encodes a type I DNA topoisomerase that is highly conserved in all known poxviruses. Although the structure and catalytic activity of the enzyme were well studied, little was known about its biological function. The viral topoisomerase was thought to be essential, and roles in DNA replication, recombination, concatemer resolution, and transcription were suggested. Here, we demons...
متن کاملThe 3'-to-5' exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination.
Poxviruses are subjected to extraordinarily high levels of genetic recombination during infection, although the enzymes catalyzing these reactions have never been identified. However, it is clear that virus-encoded DNA polymerases play some unknown yet critical role in virus recombination. Using a novel, antiviral-drug-based strategy to dissect recombination and replication reactions, we now sh...
متن کاملHigh-frequency homologous recombination in vaccinia virus DNA.
A recombinant vaccinia virus genome was constructed in which the viral thymidine kinase (tk) gene was placed between direct repeats of a 1.5-kilobase-pair DNA sequence of heterologous origin. When forced to replicate in tk- cells in the presence of methotrexate (i.e., under tk+-selective conditions), the recombinant maintained its tk+ phenotype. Under nonselective conditions, however, the tk ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005